J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

FYJC FINAL EXAM - 02

DURATION - 3 HR

MARKS - 80

SECTION - I

FYJC FIN DURATION SEC

(12)

01. Differentiate the following function with respect to \boldsymbol{x}

$$9x^2 - 2\sqrt{x} + 4\log x - 7^x + 25$$

SOLUTION:

$$y = 9x^2 - 2\sqrt{x} + 4\log x - 7^x + 25$$

$$\frac{dy}{dx} = 18x - 2 \frac{1}{2\sqrt{x}} + \frac{4}{x} - 7^{x} \log 7$$

$$= 18x - \frac{1}{\sqrt{x}} + \frac{4}{x} - 7^{x} \log 7$$

02. Find k if the area of the triangle whose vertices are A (4, k); B (-5, -7); C (-4, 1) is 38 sq. units

A
$$(\Delta ABC) = 38$$

$$\begin{vmatrix} 4 & k & 1 \\ -5 & -7 & 1 \\ -4 & 1 & 1 \end{vmatrix} = \pm 76$$

$$4(-7-1) - k(-5+4) + 1(-5-28) = \pm 76$$

$$4(-8) - k(-1) + 1(-33) = \pm 76$$

$$-32 + k - 33 = \pm 76$$

$$-65 + k = \pm 76$$

$$-65 + k = 76$$
 OR $-65 + k = -76$

$$k = 141$$
 $k = -11$

03. find equation of circle with radius 5 and concentric with circle $x^2 + y^2 + 4x - 6y = 0$

STEP 1:
$$x^2 + y^2 + 4x - 6y = 0$$

On comparing with

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

$$2g = 4$$
; $2f = -6$

$$g = 2$$
; $f = -3$; $c = 0$

$$C \equiv (-g, -f)$$

$$\equiv$$
 $(-2, 3)$

$$C(-2,3)$$
 , $r = 5$

$$(x - h)^2 + (y - k)^2 = r^2$$

$$(x + 2)^2 + (y - 3)^2 = (5)^2$$

$$x^2 + 4x + 4 + y^2 - 6y + 9 = 25$$

$$x^2 + y^2 + 4x - 6y + 13 - 25 = 0$$

$$x^2 + y^2 + 4x - 6y - 12 = 0$$
 equation of the circle

04. **Evaluate** Lim
$$x^2 + 3x - 4$$

 $x \rightarrow -4$ $x^2 + 9x + 20$

Lim
$$x^2 + 3x - 4$$

 $x \rightarrow -4$ $x^2 + 9x + 20$

= Lim
$$(x + 4)(x - 1)$$

 $x \rightarrow -4$ $(x + 4)(x + 5)$ $x \rightarrow -4$; $x \ne -4$ $\therefore x + 4 \ne 0$

$$= \lim_{x \to -4} \frac{x-1}{x+5}$$

$$=$$
 $-4-1$ $-4+5$

05.
$$\tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \frac{\pi}{4}$$

$$= \tan^{-1} \left(\frac{\frac{3}{5} + \frac{1}{4}}{1 - \frac{3}{5} \cdot \frac{1}{4}} \right)$$

$$= \tan^{-1} \left(\frac{\frac{12+5}{20}}{\frac{20-3}{20}} \right)$$

$$= \tan^{-1} \left(\frac{17}{17} \right)$$

$$= tan^{-1} (1)$$

$$= \pi/4$$

06. Find equation of parabola having focus at
$$(3,0)$$
 and directrix $x + 3 = 0$

Let the equation of the parabola : $y^2 = 4ax$

Focus :
$$S = (\alpha, 0) = (3,0) \dots$$
 given : $\alpha = 3$

Directrix :
$$x + a = 0$$

$$x + 3 = 0$$
 Given $\therefore a = 3$

Hence equation of the parabola: $y^2 = 4ax$

$$y^2 = 4(3)x$$

$$y^2 = 12x$$

07. Find
$$\frac{dy}{dx}$$
 if $y = (4x^2 - 7x + 5)$. sec x

$$\frac{dy}{dx} = (4x^2 - 7x + 5) \quad \frac{d \sec x + \sec x}{dx} \quad \frac{d}{dx} (4x^2 - 7x + 5)$$

$$= (4x^2 - 7x + 5) \sec x \cdot \tan x + \sec x \quad (8x - 7)$$

$$= \sec x \quad (4x^2 - 7x + 5) \cdot \tan x + 8x - 7$$

08. Evaluate : tan(-495°)

SOLUTION:

$$= - \tan(495^{\circ})$$

$$= - \tan(540^{\circ} - 45^{\circ})$$

$$= - \tan(180^{\circ}x3 - 45^{\circ})$$

$$= - (-tan 45)$$

= 1

Q2. (A) Attempt ANY TWO OF THE FOLLOWING

(06)

01. Prove
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}}$$
 = $\tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right)$

SOLUTION:

LHS =
$$\frac{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} + 2\sin^{-\theta}/2 \cdot \cos^{-\theta}/2}{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} - 2\sin^{-\theta}/2 \cdot \cos^{-\theta}/2}$$

$$= \frac{(\cos^{\theta}/2 + \sin^{\theta}/2)^2}{(\cos^{\theta}/2 - \sin^{\theta}/2)^2}$$

$$= \frac{\cos^{\theta/2} + \sin^{\theta/2}}{\cos^{\theta/2} - \sin^{\theta/2}}$$

Dividing Numerator & Denominator by $\cos^{-\theta}/2$

$$= \frac{\cos^{\theta/2} + \sin^{\theta/2}}{\cos^{\theta/2} - \sin^{\theta/2}}$$

$$= \frac{\cos^{\theta/2} - \sin^{\theta/2}}{\cos^{\theta/2}}$$

$$= \frac{1}{1} \frac{+ \tan^{\theta/2}}{- \tan^{\theta/2}} = RHS$$

RHS =
$$\tan (\pi/4 + \theta/2)$$

$$= \frac{\tan^{\pi}/4 + \tan^{\theta}/2}{1 - \tan^{\pi}/4 \tan^{\theta}/2}$$

$$= \frac{1 + \tan^{\theta}/2}{1 - \tan^{\theta}/2}$$

LHS = RHS

02. Prove :
$$tan^{-1}\left(\frac{1}{2}\right) + tan^{-1}\left(\frac{1}{5}\right) + tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4}$$

$$= \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{5}}{\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{5}} \right) + \tan^{-1} \left(\frac{1}{8} \right)$$

$$= \tan^{-1} \left(\frac{\frac{5+2}{10}}{\frac{10-1}{10}} \right) + \tan^{-1} \left(\frac{1}{8} \right)$$

$$= \tan^{-1} \left(\frac{7}{9}\right) + \tan^{-1} \left(\frac{1}{8}\right)$$

$$= \tan^{-1} \left(\frac{\frac{7}{9} + \frac{1}{8}}{1 - \frac{7}{9} \cdot \frac{1}{8}} \right)$$

$$= \tan^{-1} \left[\frac{\frac{56+9}{72}}{\frac{72-7}{72}} \right]$$

$$= \tan^{-1} \left[\frac{65}{65} \right]$$

=
$$tan^{-1}$$
 (1) = $\pi/4$ = RHS

03. Prove :
$$\sin (\theta - \pi/6) + \cos (\theta - \pi/3) = \sqrt{3} \cdot \sin \theta$$

$$(\sin\theta\cos^{\pi}/6 - \cos\theta.\sin^{\pi}/6) + (\cos\theta\cos^{\pi}/3 + \sin\theta.\sin^{\pi}/3)$$

$$= (\sqrt[4]{3}/2 \cdot \sin\theta - \sqrt[1]{2}\cos\theta) + (\sqrt[1]{2}\cos\theta + \sqrt[4]{3}/2 \cdot \sin\theta)$$

$$= \sqrt[4]{3}/2 \cdot \sin\theta + \sqrt[4]{3}/2 \cdot \sin\theta$$

$$= \sqrt[4]{3} \cdot \sin\theta$$

01. Find equation of hyperbola in the standard form whose eccentricity = $\sqrt{2}$ & distance between foci = $8\sqrt{2}$

SOLUTION:

Let the equation of the hyperbola be

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

distance between foci = $8\sqrt{2}$

$$2ae = 8\sqrt{2}$$

ae =
$$4\sqrt{2}$$

subs e =
$$\sqrt{2}$$
 a $\sqrt{2}$ = $4\sqrt{2}$

$$a = 4$$

Now;
$$b^2 = a^2(e^2 - 1)$$

$$b^2 = 16(2-1)$$

$$b^2 = 16$$

: the equation of the hyperbola is

$$\frac{x^2}{16} - \frac{y^2}{16} = 1$$

02. Find eccentricity, coordinates of foci, equation of directrices, length of major and minor axes and length of latus rectum for $3x^2 + 4y^2 = 1$ SOLUTION:

$$\frac{x^2}{\frac{1}{3}} + \frac{y^2}{\frac{1}{4}} = 1$$

$$a^2 = 1/3$$
 \therefore $a = 1/\sqrt{3}$

$$b^2 = \frac{1}{4}$$
 : $b = \frac{1}{2}$ $a > b$

Eccentricity

$$b^2 = a^2(1 - e^2)$$

$$\frac{1}{4} = \frac{1(1 - e^2)}{3}$$

$$\frac{3}{4}$$
 = 1 - e²

$$e^2 = 1 - 3$$

$$e^2 = \frac{1}{4}$$

$$\checkmark$$
 e = $\frac{1}{2}$

ae =
$$1/2 \times 1/\sqrt{3}$$
 = $1/2\sqrt{3}$

$$\frac{a}{e} = \frac{1/\sqrt{3}}{1/2} = \frac{2/\sqrt{3}}{1/2}$$

$$\checkmark$$
 foci $\equiv (\pm \alpha e, 0) \equiv (\pm^{1}/2\sqrt{3}, 0)$

✓ eq. of directrices: $x = \pm \alpha/e$

$$x = \pm \frac{2}{\sqrt{3}}$$

- length of major axis = $2a = \frac{2}{\sqrt{3}}$
- ✓ length of minor axis = 2b = 1
- ✓ length of latus rectum = $\frac{2b^2}{a}$ = $\frac{2(\frac{1}{4})}{\frac{1}{\sqrt{3}}}$ $=\frac{1/2}{1/\sqrt{3}}$ $= \sqrt[4]{3}/2$

03. find equ. of circle concentric with $x^2 + y^2 - 2x - 6y - 7 = 0$ and area 616 sq. units SOLUTION

STEP 1:
$$x^2 + y^2 - 2x - 6y - 7 = 0$$

On comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$
 $2g = -2$; $2f = -6$
 $g = -1$; $f = -3$; $c = 0$
 $C = (-g, -f) = (1,3)$

STEP 2:
$$area = 616$$
 $\pi r^2 = 616$
 $r^2 = \frac{616}{\pi}$
 $r^2 = \frac{616 \times 7}{22} = 196$
 $r = 14$

STEP 3:
$$(x - h)^2 + (y - k)^2 = r^2$$

$$(x - 1)^2 + (y - 3)^2 = (14)^2$$

$$x^2 - 2x + 1 + y^2 - 6y + 9 = 196$$

$$x^2 + y^2 - 2x - 6y + 10 - 196 = 0$$

$$x^2 + y^2 - 2x - 6y - 186 = 0$$
 equation of the circle

01. if
$$f(x) = \frac{x+1}{x-1}$$
 and $g(x) = \frac{2x+3}{3x-2}$, find fog

SOLUTION: fog = f(g(x)) $= \frac{g(x) + 1}{g(x) - 1}$

$$= \frac{\left(\frac{2x+3}{3x-2}\right) + 1}{\left(\frac{2x+3}{3x-2}\right) - 1}$$

$$= \frac{2x + 3 + 3x - 2}{3x - 2}$$

$$= \frac{2x + 3 - 3x + 2}{3x - 2}$$

02. Solve using Cramer's Rule : x-y+z=4, 2x+y-3z=0, x+y+z=2SOLUTION:

$$D = \begin{vmatrix} + & - & + \\ 1 & -1 & 1 \\ 2 & 1 & -3 \end{vmatrix} = 1(1+3)+1(2+3)+1(2-1)$$
$$= 1(4)+1(5)+1(1)$$
$$= 4+5+1 = 10$$

$$Dx = \begin{vmatrix} + & - & + \\ 4 & -1 & 1 \\ 0 & 1 & -3 \\ 2 & 1 & 1 \end{vmatrix} = 4(1+3)+1(0+6)+1(0-2)$$
$$= 4(4)+1(6)+1(-2)$$
$$= 16+6-2 = 20$$

$$Dy = \begin{vmatrix} + & - & + \\ 1 & 4 & 1 \\ 2 & 0 & -3 \\ 1 & 2 & 1 \end{vmatrix} = 1(0+6)-4(2+3)+1(4-0)$$

$$= 1(6) - 4(5) + 1(4)$$

$$= 6 - 20 + 4 = -10$$

$$Dz = \begin{vmatrix} 1 & -1 & 4 \\ 2 & 1 & 0 \\ 1 & 1 & 2 \end{vmatrix} = 1(2-0)+1(4-0)+4(2-1)$$
$$= 1(2) + 1(4) + 4(1)$$
$$= 2 + 4 + 4$$

$$x = \frac{Dx}{D}$$
 ; $y = \frac{Dy}{D}$; $z = \frac{Dz}{D}$

$$= \frac{20}{10} = \frac{-10}{10} = \frac{10}{10}$$

$$= 2 = -1 = 1$$
SS: {2,-1,1}

03.
$$y = \frac{2 + 3.\cos x}{3 + 2.\cos x}$$
. Find dy/dx

$$\frac{dy}{dx} = \frac{(3 + 2.\cos x) d(2 + 3.\cos x) - (2 + 3.\cos x) d(3 + 2.\cos x)}{(3 + 2.\cos x)^2}$$

$$= \frac{(3 + 2.\cos x) \cdot (0 + 3(-\sin x)) - (2 + 3.\cos x) \cdot (0 + 2(-\sin x))}{(3 + 2.\cos x)^2}$$

$$= \frac{(3 + 2.\cos x)(-3.\sin x) - (2 + 3.\cos x) \cdot (-2.\sin x)}{(3 + 2.\cos x)^2}$$

$$= \frac{-3.\sin x \cdot (3 + 2.\cos x) + 2.\sin x \cdot (2 + 3.\cos x)}{(3 + 2.\cos x)^2}$$

$$= \frac{-9.\sin x - 6.\sin x \cdot \cos x + 4.\sin x + 6.\sin x \cdot \cos x}{(3 + 2.\cos x)^2}$$

$$= \frac{-5.\sin x}{(3 + 2.\cos x)^2}$$

O3B

01. Evaluate : Lim $e^{x} + e^{-x} - 2$ $x \rightarrow 0 \quad \cos 3x - \cos 5x$

SOLUTION:

= Lim

$$x \to 0$$

$$\frac{e^{x} + \frac{1}{e^{x}} - 2}{-2 \sin \left(\frac{3x + 5x}{2}\right) \cdot \sin \left(\frac{3x - 5x}{2}\right)}$$

=
$$\lim_{x \to 0} \frac{\frac{(e^x)^2 + 1 - 2 \cdot e^x}{e^x}}{-2 \sin 4x \cdot \sin(-x)}$$

=
$$\lim_{x \to 0} \frac{\frac{(e^x - 1)^2}{e^x}}{2 \sin 4x \cdot \sin x}$$

Dividing Numerator & Denominator by x^2 , $x \to 0$, $x \ne 0$

= Lim

$$x \rightarrow 0$$

$$\frac{(e^{x} - 1)^{2}}{e^{x} \cdot x^{2}}$$

$$\frac{2 \sin 4x \cdot \sin x}{x^{2}}$$

=
$$\lim_{x \to 0} \frac{\frac{(e^x - 1)^2}{x^2} \frac{1}{e^x}}{\frac{2 \sin 4x}{x} \cdot \frac{\sin x}{x}}$$

=
$$\lim_{x \to 0} \frac{\left(\frac{e^x - 1}{x}\right)^2 \frac{1}{e^x}}{2.4 \frac{\sin 4x}{4x} \cdot \frac{\sin x}{x}}$$

$$= \frac{(\log e)^2 \cdot \frac{1}{e^0}}{2.4.(1).(1)}$$

02. the demand function is given as $P = 175 + 9D + 25D^2$ Find the total revenue and marginal revenue when demand is 10 SOLUTION:

Total Revenue

$$R = pD$$

$$= (175 + 9D + 25D^2).D$$

$$= 175D + 9D^2 + 25D^3$$

= 27650

Marginal Revenue when D = 10

 $\overline{\sf dD}$

$$= 175 + 18D + 75D^2$$

= 7855

03.
$$y = log (sine^x) + \sqrt{5 + x^6} \cdot secx$$
. Find dy/dx

STEP 1:

$$\frac{d \log (\sin e^{x})}{dx}$$

$$= \frac{1}{\sin e^{x}} \frac{d \sin e^{x}}{dx}$$

$$= \frac{1}{\sin e^{x}} \cdot \cos e^{x} \cdot \frac{d}{dx} e^{x}$$

$$= \frac{1}{\sin e^{x}} \cdot \cos e^{x} \cdot e^{x}$$

$$= e^{x} \cdot \cot e^{x}$$

STEP 2:

$$\frac{d}{dx} \sqrt{5 + x^6} \cdot \sec x$$

$$= \sqrt{5 + x^6} \cdot \frac{d \sec x + \sec x}{dx} \frac{d\sqrt{5 + x^6}}{dx}$$

$$= \sqrt{5 + x^6} \cdot \sec x \cdot \tan x + \sec x \frac{1}{2\sqrt{5 + x^6}} \frac{d(5 + x^6)}{dx}$$

$$= \sqrt{5 + x^6} \cdot \sec x \cdot \tan x + \sec x \frac{1}{2\sqrt{5 + x^6}} 6x^5$$

$$= \sqrt{5 + x^6} \cdot \sec x \cdot \tan x + \sec x \frac{3x^5}{\sqrt{5 + x^6}}$$

$$= \sec x \left(\sqrt{5 + x^6} \cdot \tan x + \frac{3x^5}{\sqrt{5 + x^6}} \right)$$

STEP 3:

$$y = \log (\sin e^{x}) + \sqrt{5 + x^{6}} \cdot \sec x$$

$$\frac{dy}{dx} = e^{x} \cdot \cot e^{x} + \sec x \left(\sqrt{5 + x^{6}} \cdot \tan x + \frac{3x^{5}}{\sqrt{5 + x^{6}}} \right)$$

Q4. Attempt ANY SIX OF THE FOLLOWING

(12)

01. Find 'x' if Price Index Numbers by Simple Aggregate method is 180

28

Base year price

12

Χ

26

Current year price 38 41 25

36

40

SOLUTION:

$$P_{01} = 180$$

$$\frac{\Sigma p_1}{} \times 100 = 180$$

Σρο

$$100 = 90 + x$$
 : $x = 10$

$$\therefore x = 10$$

02. 300 students appeared for oral and written test. 180 passed both the test. 90 students failed in both the test . 60 passed in oral but failed in written . Is the data consistent

SOLUTION:

B = student passed in written test

Written B

β

TOTAL

oral

(AB) = 180	(Aβ) = 60	(A) = 240
$(\alpha B) = -30$	$(\alpha\beta) = 90$	$(\alpha) = 60$
(B) = 150	(β) = 150	N = 300

TOTAL

α

Comment: Since $(\alpha\beta) < 0$, information is incorrect

Find n if $^{n}P_{5} = 42 ^{n}P_{3}$ 03.

SOLUTION:

$$\frac{n!}{(n-5)!} = 42 \frac{n!}{(n-3)!}$$

$$\frac{(n-3)!}{(n-5)!} = 42$$

$$\frac{(n-3)(n-4)(n-5)!}{(n-5)!} = 42$$

(DESCENDING ORDER)

$$(n-3)(n-4) = 7.6$$

On comparing

$$n = 10$$

04. Check the type of association between attributes A and B where

$$N = 500$$
 ; (A) = 325 ; (B) = 310 ; (AB) = 160

SOLUTION:

1)
$$(A) \times (B)$$
 = $\frac{65}{325} \times 310$ = 201.5

3) (AB)
$$< (A) \times (B)$$

- 4) there is negative association between attributes A and B
- 05. Obtain the 3 yearly moving averages for the following data relating to the production of tea in India

Year	:	1941	1942	1943	1944	1945	1946	1947	1948
Production	:	464	515	518	467	502	540	557	571

SOLUTION:

Year	Production	3 YEAR MOVING	3 YEAR MOVING
		TOTAL (T)	AVG (T/3)
1941	464		
1942	515	1497	499
1943	518	1500	500
1944	467	1487	495.67
1945	502	1509	503
1946	540	1599	533
1947	557	1668	556
1948	571		

06. a card is drawn from a pack of 52 cards . What is the probability that it is a face card , given that it is a red card

SOLUTION: A : face card
$$P(A) = 12/52$$

B : red card
$$P(A) = 26/52$$

$$A \cap B$$
: face card and red card = $6/52$

$$E = A \mid B$$

$$P(E) = P(A \mid B)$$

$$= P(A \cap B)$$

$$P(B)$$

$$= \frac{6}{26}$$

$$= \frac{3}{13}$$

- 07. In how many ways letters of the word "STORY" be arranged so that
 - a) T and Y are always together b) T is always next to Y

a) T and Y are always together

Consider T & Y as 1 set

1 set of T & Y & 3 other letters can be arranged in ${}^4P_4 = 4!$ ways

Having done that;

The letters T & Y can then be arranged amongst themselves in ${}^{2}P_{2} = 2!$ ways

By fundamental principle of Multiplication

Total arrangements = $4! \times 2!$

 $= 24 \times 2 = 48$

b) T is always next to Y

Consider T & Y as 1 set

1 set of T & Y & 3 other letters can be arranged in ${}^4P_4 = 4!$ ways

Since T is always next to Y , they SHOULD NOT BE be further arranged in ${}^{2}P_{2} = 2!$ Ways

By fundamental principle of Multiplication

Total arrangements = 4!

= 24

08. a bag contains 10 white balls and 15 black balls. Two balls are drawn in succession with replacement. What is the probability that first is white and second is black

exp: Two balls are drawn in succession without replacement

E ≡ first is white AND second is black

 $E \equiv A \cap B$

$$P(E) = P(A \cap B)$$

$$P(E) = P(A) \times P(B \mid A)$$

$$=$$
 $\frac{10}{25}$ \times $\frac{15}{24}$

01. a problem is given to three students A,B,C whose chances of solving it are 1/2, 1/3 & 1/4 respectively. Find the probability that the problem will be solved

SOLUTION:

 $P(A) = \frac{1}{2}$, $P(A') = \frac{1}{2}$ A: student A can solve a problem

 $P(B) = \frac{1}{3}$, $P(B') = \frac{2}{3}$ B: student B can solve a problem

C: student B can solve a problem $P(C) = \frac{1}{4}$, $P(C') = \frac{3}{4}$

E ≡ problem is solved

E' ≡ problem is not solved

 $E' \equiv A' \cap B' \cap C'$

 $P(E') = P(A' \cap B' \cap C')$ $= P(A') \times P(B') \times P(C')$ P(E) = 1 - P(E')= $\frac{1}{2}$ \times $\frac{2}{3}$ \times $\frac{3}{4}$

- 02. if P(A) = 1/4; P(B) = 2/5; $P(A \cup B) = 1/2$, then find
 - a) $P(A \cap B)$ b) $P(A \cap B')$ c) $P(A' \cap B)$

a)
$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

$$= \frac{1}{4} + \frac{2}{5} - \frac{1}{2}$$

$$= \frac{5+8-10}{20}$$

$$= \frac{3}{20}$$

b)
$$P(A \cap B') = P(A) - P(A \cap B) = \frac{1}{4} - \frac{3}{20} = \frac{5-3}{20} = \frac{1}{10}$$

c)
$$P(A' \cap B) = P(B) - P(A \cap B) = \frac{2}{5} - \frac{3}{20} = \frac{8-3}{20} = \frac{1}{4}$$

03. Two adults and three children are sitting on a sofa and watching TV . Find the probability that the adults are sitting together

SOLUTION:

Exp : two adults and three children are to be arranged on a sofa

 $n(S) = {}^{5}P_{5} = 5!$

Event : adults are sitting together

Consider 2 adults as 1 set.

Hence 1 set of 2 adults and 3 children can be arranged amongst

themselves in ${}^{4}P_{4} = 4!$ Ways

Having done that;

The two adults can be arranged in ${}^{2}P_{2}$ = 2! Ways

Hence total ways = $4! \times 2!$

... BY FUNDAMENTAL PRINCIPLE OF MULTIPLICATION .

n(E) = 4! X 2!

$$P(E) = n(E) = 4! \times 2! = 4! \times 2! = 2..$$

 $p(S) = 5! = 5.4! = 5.$

01. Find the cost of Living Index number taking 2001 as base year

Group	p ₀	рі	W	$I = \frac{p_1}{P_0} \times 100 \qquad Iw$
А	15	36	60	$\frac{36 \times 100}{15} = 240 \qquad 14400$
В	48	96	5	$\frac{96 \times 100}{48} = 200 \qquad 1000$
С	30	90	10	$\frac{90 \times 100}{30} = 300$ 3000
D	60	180	15	$\frac{180 \times 100}{60} = 300 \qquad 4500$
E	45	90	10	$\frac{90 \times 100}{45} = 200 \qquad 2000$
			$\Sigma w = 100$	$\Sigma _{W} = 24900$
				CLI = $\frac{\Sigma Iw}{\Sigma w}$ = $\frac{24900}{100}$ = 249

02. SOLUTION: A = male is literate

 $B \equiv male is unemployed$

uner	mployed B		β employed TOTAL				
literate A	(AB) =	4	(Aβ) =	36	(A) = 40		
α	(αB) =	8	$(\alpha\beta) =$	152	$(\alpha) = 160$		
TOTAL	(B) =	12	(β) =	188	N = 200		

ROUGH WORK

$$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) + (A\beta)(\alpha B)}$$

$$= \frac{(4)(152) - (36)(8)}{(4)(152) + (36)(8)}$$

$$= \frac{608 - 288}{608 + 288}$$

$$= \frac{320}{608 + 288} = 0.3572$$

896

2. 5051 - 2. 9523 AL 1. 5528 0. 3572

- 100 students appeared for two examinations, 60 passed in first examination, 50 passed 03. the second and 30 passed in both. Find the probability that a student selected at random
 - a) passed in at least one examination b) passed in exactly one examination
- - c) failed in both the examination

A : student has passed in 'FIRST' exam $P(A) = \frac{60}{100}$ B : student has passed in 'SECOND' exam $P(B) = \frac{50}{100}$ $A \cap B$: student has passed in 'BOTH' exams $P(A \cap B) = \frac{30}{100}$

a) $E \equiv \text{student has passed in at least one examination}$

$$E \equiv A \cup B$$

$$P(E) = P(A \cup B)$$

$$= P(A) + P(B) - P(A \cap B)$$

$$= \frac{60}{100} + \frac{50}{100} - \frac{30}{100}$$

$$= \frac{80}{100}$$

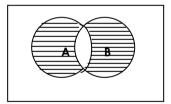
b) E = student has passed in exactly one examination

$$E = (A \cup B) - (A \cap B)$$

$$P(E) = P(A \cup B) - P(A \cap B)$$

= $\frac{80}{100} - \frac{30}{100}$

= 50/100

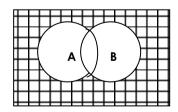


E = student failed in both the examination c)

$$E \equiv A' \cap B'$$

$$P(E) = P(A' \cap B')$$

= 1 - P(A \cup B)
= 1 - 0.80
= 0.20



01. There are 4 professors and 6 students . In how many ways a committee of 4 can be formed so as to include at least 2 professors

SOLUTION:

Case 1: Committee contains 2 professors and 2 students

This can be done in ${}^4C_2 \times {}^6C_2$

 $= 6 \times 15 = 90 \text{ ways}$

Case 2: Committee contains 3 professors and 1 student

This can be done in ${}^4C_3 \times {}^6C_1$

 $= 4 \times 6 = 24 \text{ ways}$

Case 3: Committee contains 4 professors and no student

This can be done in ${}^{4}C_{4} = 1$ way

By FUNDAMENTAL PRINCIPLE OF ADDITION

Total ways of forming the committee = 115

02. Out of 4 officers and 10 clerks in an office, a committee consisting of 2 officers and 3 clerks is to be formed. In how many ways can this be done if one particular clerk must be on the committee

 ${\tt SOLUTION}:$

since one particular clerk must be on the committee , the remaining 2 clerks have to be selected from the remaining 9 clerks . This can be done in ${}^9\text{C}_2$ ways

Having done that,

2 officers have to be selected from the 4 officers . This can be done in $\,^4\text{C}_2$ ways

By fundamental principle of Multiplication,

Total ways of forming the committee = ${}^{9}C_{2} \times {}^{4}C_{2}$ = 36 x 6 = 216

03.
n
 C 6 : $^{n-3}$ C 3 = 33 : 4 , find n

$$\frac{\text{n C } 6}{\text{n-3 C } 3} = \frac{33}{4}$$

$$\frac{\text{n!}}{(\text{n - 6})!.6!} = \frac{33}{4}$$

$$\frac{(\text{n - 3})!}{(\text{n - 3 - 3})!.3!} = \frac{33}{4}$$

$$\frac{\text{n!}}{(\text{n - 6})!.6!} = \frac{33}{4}$$

$$\frac{\text{n! x } 3!}{(\text{n - 6})!.3!} = \frac{33}{4}$$

$$\frac{\text{n! x } 3!}{(\text{n - 3})!} = \frac{33}{4}$$

$$\frac{\text{n! x } 3!}{(\text{n - 3})!} = \frac{33}{4}$$

$$\frac{\text{n! (n - 1)(n - 2)(n - 3)! x } 3!}{(\text{n - 3})!} = \frac{33}{4}$$

$$\frac{\text{n! (n - 1)(n - 2)(n - 3)! x } 3!}{(\text{n - 3})!} = \frac{33}{4}$$

$$\frac{n(n-1)(n-2)}{6.5.4} = \frac{33}{4}$$

$$n(n-1)(n-2) = 33.6.5$$

$$n(n-1)(n-2) = 990$$

$$n(n-1)(n-2) = 11 \times 10 \times 9$$

On Comparing; n = 11

Q6B

01. Calculate Fisher's Price Index number

p ₀	q ₀	p ₁	q ₁	p ₀ q ₀	p ₀ q ₁	p ₁ q ₀	pldl
22	10	25	30	220	660	250	750
34	12	35	40	408	1360	420	1400
28	15	25	25	420	700	375	625
26	15	25	10	364	260	350	250
30	11	35	10	330	300	385	350
				1742	3280	1780	3375
				Σp ₀ q ₀	$\Sigma_{P_0q_1}$	$\Sigma_{P_1 q_0}$	$\Sigma_{P_1q_1}$

$$P_{01}(L) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$$

$$= \frac{1780}{1742} \times 100$$

$$= 102.2$$

$$LOG CALC.$$

$$3. 2504$$

$$- 3. 2410$$

$$AL 0. 0094$$

$$1.022$$

$$P_{01}(P) = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$

$$= \frac{3375}{3280} \times 100$$

$$= 102.9$$

$$LOG CALC.$$

$$3. 5282$$

$$- 3. 5159$$

$$AL 0. 0123$$

$$1.029$$

P01(F) =
$$\sqrt{P01(L)}$$
 x P01(P) LOG CALC.
2. 0094
+ 2. 0123
- 102.5 AL 2.0109
102.5

02 Obtain trend line by method of least squares

55.3

Σγ

Year	1959	1960	1961	1962	1963
% insured	11.3	13	9.7	10.6	10.7
SOLUTION:					

_U2 U = t - 1961УU 1959 11.3 -2 4 -22.61960 13 -1 -131 1961 9.7 0 0 0 1962 10.6 10.6 1 1 1963 2 21.4 10.7 4

0

Συ

$$y = a + bu$$
 $yu = au + bu^{2}$
 $\Sigma y = na + b\Sigma u$ $\Sigma yu = a\Sigma u + b\Sigma u^{2}$
 $55.3 = 5a$ $-3.6 = b(10)$
 $a = 11.06$ $b = -0.36$

Hence frend line, y = 11.06 - 0.36u where u = t - 1961

03. Without repetition of digits , 4 digit numbers are formed using digits 5, 6, 7, 8, 9, 0. Find the probability that the number formed is ODD and greater than 6000 Exp: 4 digit numbers to be formed using the digits 5, 6, 7, 8, 9, 0. thousand place can be filled by any of the 5 digits (excluding 0) in 5P_1 ways Remaining 3 places can be filled by any 3 of the remaining 5 digits in 5P_3 ways By fundamental principle of multiplication , $n(S) = {}^5P_1 \times {}^5P_3 = 300$

10

 ΣU^2

-3.6

Σγυ

E: number formed is ODD and greater than 6000

Case 1: Thousand place is filled by digit 6, 8

Thousand place can be filled by digit 6 or in 2 way Since the number is ODD ,

Unit place can be filled by any one of the digits 5, 7, 9 in 3P_1 ways Having done that; remaining two places can be filled by any 2 of the remaining 4 digits in 4P_2 ways

By fundamental principle of multiplication,

nos. formed = ${}^{2}x{}^{3}P_{1}x{}^{4}P_{2} = 72$

Case 2: Thousand place is filled by digit 7,9

Thousand place can be filled by digit '7 or 9 in 2 way

Since the number is ODD,

Unit place can be then be filled by any of the remaining 2 odd digits in 2 ways

Having done that ; remaining two places can be filled by any of the remaining 4 digits in $^4\text{P}_2$ ways

By fundamental principle of multiplication ,

nos. formed =
$$2 \times 2 \times ^{4}P_{2} = 48$$

Therefore; By fundamental principle of ADDITION, n(E) = 72 + 48 = 120

$$P(E) = \frac{n(E)}{n(S)} = \frac{120}{300} = \frac{2}{5}$$